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Challenges of modern accelerators (the LHC case)

▪ LHC: 27 km, 7 TeV per beam
➢ The total energy stored in the magnets is HUGE: 10 GJ (2,400 

kilograms of TNT)

➢ The total energy carried by the two beams reaches 700 MJ 
(173 kilograms of TNT)

➢ Loss of only one ten-millionth part (10−7) of the beam is 
sufficient to quench a superconducting magnet

▪ LHC vacuum chamber diameter : ~40 mm

▪ LHC average rms beam size (at 7 TeV): 0.14 mm

▪ LHC average rms beam angle spread: 2 µrad
➢ Very large ratio of forward to transverse momentum

▪ LHC typical cycle duration: 10 hrs = 4x108 revolutions

▪ Kinetic energy of a typical semi truck at 60 mph: ~7 MJ
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What keeps particles stable in an accelerator?

▪ Particles are confined (focused) by

static magnetic fields in vacuum.

▪ An ideal focusing system in all modern 

accelerators is nearly integrable
➢ There exist 3 conserved quantities (integrals of

motion); the integrals are “simple” – polynomial in

momentum.

➢ The particle motion is confined by these integrals.

➢ Nonlinear elements destroy the intregrability at large 
amplitudes (hence particle losses)

S.  Nagaitsev, Jan 29, 2019
3



Strong Focusing
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The accelerator Hamiltonian

▪ After some canonical transformations (see R. Ruth) and 
in a small-angle approximation
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For a pure quadrupole magnet: Kx(s) = - Ky(s)

This Hamiltonian is separable!
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Strong Focusing – our standard method since 1952
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s is “time”
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-- piecewise constant

alternating-sign functions

Particle undergoes 

betatron oscillations

Christofilos (1949); Courant, Livingston and Snyder (1952) 



Strong focusing
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▪ Focusing fields must satisfy Maxwell equations in vacuum

▪ For stationary fields: focusing in one plane while defocusing in another

➢ quadrupole: 

➢ However, alternating quadrupoles

results in effective focusing in both planes

( , , ) 0x y z =

2 2( , )x y x y  −

Specifics of accelerator focusing:
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Courant-Snyder invariant
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Action-angle variables

▪ We can further remove the s-dependence by 
another canonical transformation.
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See R. Ruth’s

paper, ref. [2] 



Non-linear elements
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The addition of these nonlinear elements to accelerator

focusing (almost always) makes it non-integrable.
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Non-linear focusing elements

▪ It became obvious very early on (~1960), that the use of 
nonlinear focusing elements in rings is necessary and 
some nonlinearities are unavoidable (magnet aberrations, 
space-charge forces, beam-beam forces)
➢ Sexupoles appeared in 1960s for chromaticity corrections

➢ Octupoles were installed in CERN PS in 1959 but not used until 
1968. For example, the LHC has ~350 octupoles for Landau 
damping.

▪ It was also understood at the same time, that nonlinear 
focusing elements have both beneficial and detrimental 
effects, such as:
➢ They drive nonlinear resonances (resulting in particle losses) and 

decrease the dynamic aperture (also particle losses).
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KAM theory

▪ Developed by Kolmogorov, Arnold, 

Moser (1954-63).

▪ Explains why we can operate 

accelerators away from resonances.

▪ The KAM theory states that if the 

system is subjected to a weak nonlinear perturbation, 
some of periodic orbits survive, while others are 
destroyed. The ones that survive are those that have 
“sufficiently irrational” frequencies (this is known as the 
non-resonance condition). 

▪ Does not explain how to get rid of resonances
➢ Obviously, for accelerators, making ALL nonlinearities to be 

ZERO would reduce (or eliminate) resonances

➢ However, nonlinearities are necessary and unavoidable.

KEK-B
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Nonlinear Integrable Systems

▪ What we are looking for is a non-linear equivalent of 
Courant-Snyder invariants, for example something like 
that,
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Specifics of accelerator focusing

▪ The transverse focusing system is 2.5D (i.e. time-
dependent)
➢ In a linear system (strong focusing), the time dependence can be 

transformed away by introducing a new “time” variable (the 
betatron phase advance). Thus, we have the Courant-Snyder 
invariant.

▪ The focusing elements we use in accelerator must 
satisfy:
➢ The Laplace equation (for static fields in vacuum)

➢ The Poisson equation (for devices based on charge distributions, 
such as electron lenses or beam-beam effects)



First example
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 See: Phys. Rev. ST Accel. Beams 13, 084002
 Start with a round axially-symmetric LINEAR 

focusing lattice (FOFO)
 Add a special potential V(x,y,s) such that it satisfies either 

the Laplace or the Poisson equation 
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Special time-dependent potential
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 Let’s consider a Hamiltonian of this FOFO system:

where V(x,y,s) satisfies the Laplace or the Poisson 
equations in 2d:

 In normalized variables we will have:
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Axially-symmetric focusing lens:

S.  Nagaitsev, Jan 18, 2017
17

▪ Could be a solenoid (at low energies), or…

▪ Could be an optics insert that has a transfer matrix 
of a thin axially-symmetric focusing lens:                
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Fake thin lens inserts
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Main Ideas
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1. Start with a time-dependent Hamiltonian:

2. Chose the potential to be time-independent in new 
variables

3. Find potentials U(x, y) with the second integral of 
motion and such that ΔU(x, y) = 0 (for example)
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Example 1: quadrupoles
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▪ This can be made with

10-20 thin quads, each

powered independently
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Integrable but still linear…
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This Hamiltonian is NOT integrable,

Henon-Heiles – like system

▪ 18 Octupoles

▪ We will try to make integrable (on Thursday)

Like that:

Example 2: Octupoles
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Example 2: continued

▪ Contour plot of the octupole potential and the 
betatron tunes
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Example 3: polar coordinates

▪ Turns out such a potential exists and the system is 
separable in polar coordinates
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Variables separation in polar coordinates
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Example 3 continued
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Summary

▪ We discussed how to transform the time variable 
to make the FOFO system “time independent”

▪ We then discussed several examples of how to 
exploit this time-independence to make the 
focusing system nonlinear, yet integrable.
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